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Abstract. Given a d × d matrix M , it is well known that finding a d × d rota-

tion matrix U that maximizes the trace of UM , i.e., that makes UM a matrix of

maximal trace over rotation matrices, can be achieved with a method based on the

computation of the singular value decomposition (SVD) of M . We characterize

d×d matrices of maximal trace over rotation matrices in terms of their eigenvalues,

and for d = 2, 3, we identify alternative ways, other than the SVD, of computing U
so that UM is of maximal trace over rotation matrices.
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1. Introduction

Suppose P = {p1, . . . , pn} and Q = {q1, . . . , qn} are each sets of n points in R
d.

With ‖ · ‖ denoting the d−dimensional Euclidean norm, in the constrained orthog-

onal Procrustes problem [7,8,15], a d× d orthogonal matrix U is found that mini-

mizes ∆(P,Q,U) =
∑n

i=1 ‖Uqi−pi‖2, U constrained to be a rotation matrix, i.e.,

an orthogonal matrix of determinant one. This problem generalizes to the so-called

Wahba’s problem [11, 16] which is that of finding a d × d rotation matrix U that

minimizes ∆(P,Q,W,U) =
∑n

i=1 wi ‖Uqi − pi‖2, where W = {w1, . . . , wn}
is a set of n nonnegative weights. Solutions to these problems are of importance,

notably in the field of functional and shape data analysis [4,14], where, in particu-

lar, the shapes of two curves are compared, in part by optimally rotating one curve

to match the other. In [2], for the same purpose, Wahba’s problem occurs with the

additional constraint
∑n

i=1 wi = 1 due to the use of the trapezoidal rule during

the discretization of integrals. Given a d× d matrix M , it is well known that solu-

tions to these problems are intimately related to the problem of finding among all

d× d rotation matrices U , one that maximizes the trace of UM , and that the max-

imization can be achieved with a method called the Kabsch-Umeyama algorithm

(loosely referred to as “the SVD method” in what follows), based on the computa-

tion of the singular value decomposition (SVD) of M [2,7–9,11,15]. In this paper,

we analyze matrices of maximal trace over rotation matrices: A d× d matrix M is

of maximal trace over rotation matrices if given any d × d rotation matrix U , the

trace of UM does not exceed that of M . As a result, we identify a characterization

of these matrices: A d× d matrix is of maximal trace over rotation matrices if and

only if it is symmetric and has at most one negative eigenvalue, which, if it exists,

is no larger in absolute value than the other eigenvalues of the matrix. Establish-

ing this characterization is the main goal of this paper, and for d = 2, 3, we show

how it can be used to determine whether a matrix is of maximal trace over rotation

matrices. Finally, although depending only slightly on the characterization, as a

secondary goal of the paper, for d = 2, 3, we identify alternative ways, other than

the SVD, of obtaining solutions to the aforementioned problems. Accordingly, for

d = 2, we identify an alternative way that does not involve the SVD, and for d = 3,

one that without it, for matrices of randomly generated entries, is successful in our

experiments close to one hundred percent of the time, using the SVD only when it

is not.

In Section 2 we reformulate the constrained orthogonal Procrustes problem and

Wahba’s problem in terms of the trace of matrices, and verify the well-known fact

that given one such problem, there is a d × d matrix M associated with it such

that a d × d rotation matrix U is a solution to it if and only if UM is of maximal
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trace over rotation matrices. In Section 3 we identify the characterization of d× d
matrices of maximal trace over rotation matrices and show that for d = 2, 3, it can

be used to determine whether a matrix is of maximal trace over rotation matrices.

Once the main goal of the paper is established, i.e., the characterization has been

identified, most of the rest of Section 3 and for that matter the rest of the paper, is

for accomplishing the secondary goal of the paper, i.e., identifying, for d = 2, 3,

alternative ways, other than the SVD, of obtaining solutions to the aforementioned

problems. For this purpose, in Section 4 we present alternative solutions expressed

in closed form, that do not involve the SVD method, to the two-dimensional con-

strained orthogonal Procrustes problem and Wahba’s problem, and indeed, given

a 2 × 2 matrix M , to the problem of finding a 2 × 2 rotation matrix U such that

UM is of maximal trace over rotation matrices. Using results from the latter part

of Section 3, in Section 5, given a 3× 3 symmetric matrix M , we present an alter-

native solution that does not involve the SVD to the problem of finding a rotation

matrix U such that UM is of maximal trace over rotation matrices. This alternative

solution is based on a trigonometric identity that can still be used if the matrix M
is not symmetric, to produce the usual orthogonal matrices necessary to carry out

the SVD method. Finally, in Section 6, we reconsider the situation in which the

3× 3 matrix M is not symmetric, and as an alternative to the SVD method present

a procedure that uses the so-called Cayley transform in conjunction with Newton’s

method to find a 3 × 3 rotation matrix U so that UM is symmetric, possibly of

maximal trace over rotation matrices. If the resulting UM is not of maximal trace

over rotation matrices, using the fact that it is symmetric, another 3 × 3 rotation

matrix R can then be computed (without the SVD) as described in Section 5 so that

RUM is of maximal trace over rotation matrices. Of course, if Newton’s method

fails in the procedure, the SVD method is still used as described above. We then

note, still in Section 6, that all of the above about the three-dimensional case, in-

cluding carrying out the SVD method as described above, has been successfully

implemented in Fortran, and that without the SVD, for randomly generated matri-

ces, the Fortran code is successful in our experiments close to one hundred per cent

of the time, using the SVD only when it is not. We then also note that the Fortran

code is faster than Matlab1 code using Matlab’s SVD command, and provide links

to all codes (Fortran and Matlab) at the end of the section.

1The identification of any commercial product or trade name does not imply endorsement or

recommendation by the National Institute of Standards and Technology.
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2. Reformulation of Problems as Maximizations of the Trace of Matri-

ces Over Rotations

With P = {p1, . . . , pn}, Q = {q1, . . . , qn}, each a set of n points in R
d, and W =

{w1, . . . , wn}, a set of n nonnegative real numbers (weights), we now think of P
and Q as d×n matrices having the pi’s and qi’s as columns so that P =

(

p1 . . . pn
)

,

Q =
(

q1 . . . qn
)

, and of W as an n × n diagonal matrix with w1, . . . , wn as the

elements of the diagonal, in that order running from the upper left to the lower

right of W so that

W =













w1 0 . . . . . . 0
0 w2 0 . . . 0
. . . . . . . . . . . . . . .
0 . . . 0 wn−1 0
0 . . . . . . 0 wn













.

Since Wahba’s problem becomes the constrained orthogonal Procrustes problem if

the weights are all set to one, we focus our attention on Wahba’s problem and thus

wish to find a d× d rotation matrix U that minimizes

∆(P,Q,W,U) =
n
∑

i=1

wi ‖Uqi − pi‖2.

With this purpose in mind, we rewrite
∑n

i=1 wi ‖Uqi − pi‖2 as follows, where

given a matrix R, tr(R) stands for the trace of R

n
∑

i=1

wi ||Uqi − pi||2 =
n
∑

i=1

wi(Uqi − pi)
T (Uqi − pi)

= tr
(

W (UQ− P )T (UQ− P )
)

= tr
(

W (QTUT − P T )(UQ− P )
)

= tr
(

W (QTQ+ P TP −QTUTP − P TUQ)
)

= tr(WQTQ) + tr(WP TP )− tr(WQTUTP )− tr(WP TUQ)

= tr(WQTQ) + tr(WP TP )− tr(P TUQW T )− tr(WP TUQ)

= tr(WQTQ) + tr(WP TP )− tr(W TP TUQ)− tr(WP TUQ)

= tr(WQTQ) + tr(WP TP )− 2tr(WP TUQ)

= tr(WQTQ) + tr(WP TP )− 2tr(UQWP T )

where a couple of times we have used the fact that for positive integers k, l, if A is

a k × l matrix and B is an l × k matrix, then tr(AB) = tr(BA). Since only the

third term in the last line above depends on U , denoting the d × d matrix QWP T
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by M , it suffices to find a d× d rotation matrix U that maximizes tr(UM), and it

is well known that one such U can be computed with a method based on the sin-

gular value decomposition (SVD) of M [2, 7–9, 11, 15]. This method is called the

Kabsch-Umeyama algorithm [7, 8, 15] (loosely referred to as “the SVD method”

throughout this paper), which we outline for the sake of completeness (see Algo-

rithm Kabsch-Umeyama below, where diag{s1, . . . , sd} is the d× d diagonal ma-

trix with numbers s1, . . . , sd as the elements of the diagonal, in that order running

from the upper left to the lower right of the matrix, and see [9] for its justification

in a purely algebraic manner through the exclusive use of simple concepts from

linear algebra). The SVD [10] of M is a representation of the form M = V SRT ,

where V and R are d × d orthogonal matrices and S is a d × d diagonal matrix

with the singular values of M , which are nonnegative real numbers, appearing in

the diagonal of S in descending order, from the upper left to the lower right of S.

Finally, note that any real matrix, not necessarily square, has an SVD , not neces-

sarily unique [10].

Algorithm Kabsch-Umeyama

Compute d× d matrix M = QWP T .

Compute SVD of M , i.e., identify d× d matrices V , S, R,

with M = V SRT in the SVD sense.

Set s1 = . . . = sd−1 = 1.

If det(V R) > 0, then set sd = 1, else set sd = −1.

Set S̃ = diag{s1, . . . , sd}.

Return d× d rotation matrix U = RS̃V T .

3. Characterization of Matrices of Maximal Trace Over Rotations

In what follows, given a real d × d matrix M , we say that M is of maximal trace

over rotation (orthogonal) matrices if for any d × d rotation (orthogonal) matrix

U , it must be that tr(M) ≥ tr(UM).

Proposition 1: Let M be a d × d matrix. If one of the following occurs, then the

other two occur as well.

i. tr(M) ≥ tr(UM) for any d× d rotation (orthogonal) matrix U .

ii. tr(M) ≥ tr(MU) for any d× d rotation (orthogonal) matrix U .

iii. tr(M) ≥ tr(UMV ) for any d× d rotation (orthogonal) matrices U, V .
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Proof: With I as the d× d identity matrix, we have

i ⇒ ii: tr(MU) = tr(UMUUT ) = tr(UM) ≤ tr(M).
ii ⇒ iii: tr(UMV ) = tr(UTUMV U) = tr(MV U) ≤ tr(M).
iii ⇒ i: tr(UM) = tr(UMI) ≤ tr(M).

�

Proposition 2: Let A be a d × d matrix. If A is of maximal trace over rotation

(orthogonal) matrices, then A is a symmetric matrix.

Proof: It suffices to prove the proposition only for rotation matrices.

Let aij , i, j = 1, . . . , d, be the entries in A, and assuming A is not a symmetric

matrix, suppose k, l are such that k > l and alk 6= akl.
Given an angle θ, 0 ≤ θ < 2π, a d × d so-called Givens rotation G(k, l, θ) can

be defined with entries gij , i, j = 1, . . . , d, among which, the nonzero entries are

given by

gmm = 1, m = 1, . . . , d, m 6= l, m 6= k

gll = gkk = cos θ

glk = −gkl = − sin θ.

That G(k, l, θ) is a rotation matrix (an orthogonal matrix of determinant equal to

one) has long been established and is actually easy to verify.

Let a = all + akk, b = alk − akl, c =
√
a2 + b2. Clearly b 6= 0 so that c 6= 0

and c > a. For our purposes we choose θ so that cos θ = a/c and sin θ = b/c.
Thus, for this θ, G(k, l, θ) is such that gll = gkk = a/c, and glk = −gkl = −b/c.
We show tr(G(k, l, θ)A) > tr(A) which contradicts that A is of maximal trace

over rotation matrices.

Let vij , i, j = 1, . . . , d, be the entries in G(k, l, θ)A. We show
∑d

m=1 vmm >
∑d

m=1 amm. Clearly vmm = amm, m = 1, . . . , d, m 6= l, m 6= k, thus it suffices

to show vll + vkk > all + akk, and we know all + akk = a.

Also clearly vll = gllall + glkakl and vkk = gklalk + gkkakk, so that

vll + vkk = (a/c)all + (−b/c)akl + (b/c)alk + (a/c)akk

= (a/c)(all + akk) + (b/c)(alk − akl) = (a/c)a + (b/c)b

= (a2 + b2)/c = c2/c = c > a.

�

The following useful proposition was proven in [9]. For the sake of completeness

we present the proof here. Here diag{σ1, . . . , σd} is the d×d diagonal matrix with

the numbers σ1, . . . , σd as the elements of the diagonal, in that order running from

the upper left to the lower right of the matrix, and det(W ) is the determinant of the
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d× d matrix W .

Proposition 3: If D = diag{σ1, . . . , σd}, σj ≥ 0, j = 1, . . . , d, and W is a d× d
orthogonal matrix, then

1) tr(WD) ≤∑d
j=1 σj .

2) If B is a d× d orthogonal matrix, S = BTDB, then tr(WS) ≤ tr(S).

3) If det(W ) = −1, σd ≤ σj , j = 1, . . . , d−1, then tr(WD) ≤∑d−1

j=1 σj−σd.

Proof: Since W is orthogonal and if Wkj , k, j = 1, . . . , d, are the entries of W ,

then, in particular, Wjj ≤ 1, j = 1, . . . , d, so that

tr(WD) =
∑d

j=1Wjjσj ≤
∑d

j=1 σj , and therefore statement 1) holds.

Accordingly, assuming B is a d × d orthogonal matrix, since BWBT is also or-

thogonal, it follows from 1) that

tr(WS) = tr(WBTDB) = tr(BWBTD) ≤ ∑d
j=1 σj = tr(D) = tr(S), and

therefore 2) holds.

If det(W ) = −1, we show next that a d× d orthogonal matrix B can be identified

so that with W̄ = BTWB, then W̄ =
(

W0 O
OT −1

)

, in which W0 is interpreted as the

upper leftmost d− 1× d− 1 entries of W̄ and as a d− 1× d− 1 matrix as well,

and O is interpreted as a vertical column or vector of d− 1 zeroes.

With I as the d × d identity matrix, then det(W ) = −1 implies det(W + I) =
−det(W )det(W + I) = −det(W T )det(W + I) = −det(I +W T ) = −det(I +
W ) which implies det(W + I) = 0 so that x 6= 0 exists in R

d with Wx = −x.

It also follows then that W TWx = W T (−x) which gives x = −W Tx so that

W Tx = −x as well.

Letting bd = x, vectors b1, . . . , bd−1 can be obtained so that b1, . . . , bd form a

basis of Rd, and by the Gram-Schmidt process starting with bd, we may assume

b1, . . . , bd form an orthonormal basis of R
d with Wbd = W T bd = −bd. Let-

ting B = (b1, . . . , bd), interpreted as a d × d matrix with columns b1, . . . , bd, in

that order, it then follows that B is orthogonal, and with W̄ = BTWB and W0,

O as previously described, noting BTWbd = BT (−bd) =
(

O
−1

)

and bTdWB =

(W T bd)
TB = (−bd)

TB = (OT − 1), then W̄ =
(

W0 O
OT −1

)

. Note W̄ is orthogo-

nal and therefore so is the d− 1× d− 1 matrix W0.

Let S = BTDB and write S =
(

S0 a
bT γ

)

, in which S0 is interpreted as the upper

leftmost d− 1× d− 1 entries of S and as a d− 1× d− 1 matrix as well, a and b
are interpreted as vertical columns or vectors of d− 1 entries, and γ as a scalar.

Note tr(WD) = tr(BTWDB) = tr(BTWBBTDB) = tr(W̄S), so that W̄S =
(

W0 O
OT −1

) (

S0 a
bT γ

)

=
(

W0S0 W0a
−bT −γ

)

gives tr(WD) = tr(W0S0)− γ.

We show tr(W0S0) ≤ tr(S0). For this purpose let Ŵ =
(

W0 O
OT 1

)

, W0 and O as
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above. Since W0 is orthogonal, then clearly Ŵ is a d × d orthogonal matrix, and

by 2), tr(ŴS) ≤ tr(S) so that ŴS =
(

W0 O
OT 1

) (

S0 a
bT γ

)

=
(

W0S0 W0a
bT γ

)

gives

tr(W0S0) + γ = tr(ŴS) ≤ tr(S) = tr(S0) + γ. Thus, tr(W0S0) ≤ tr(S0).
Note tr(S0)+γ = tr(S) = tr(D), and if Bkj , k, j = 1, . . . , d are the entries of B,

then γ =
∑d

k=1B
2
kdσk, a convex combination of the σk’s, so that γ ≥ σd. It then

follows that

tr(WD) = tr(W0S0)− γ ≤ tr(S0)− γ = tr(D)− γ − γ ≤∑d−1

j=1 σj − σd, and

therefore 3) holds. �

Conclusion 3) of Proposition 3 above can be improved as follows.

Proposition 4: Given D = diag{σ1, . . . , σd}, σj ≥ 0, j = 1, . . . , d, let k =
arg minj{σj , j = 1, . . . , d}. If W is a d×d orthogonal matrix with det(W ) = −1,

then tr(WD) ≤∑d
j=1,j 6=k σj − σk.

Proof: Assume k 6= d, as otherwise the result follows from 3) above.

Let G be the d×d orthogonal matrix with entries gil, i, l = 1 . . . , d, among which,

the nonzero entries are given by

gmm = 1, m = 1, . . . , d, m 6= k, m 6= d, gkd = gdk = 1.

Note G−1 = GT = G. Letting Ŵ = GWG, D̂ = GDG, then det(Ŵ ) = −1 and

tr(Ŵ D̂) = tr(GTWGGTDG) = tr(WD).

Note Ŵ is the result of switching rows k and d of W and then switching columns

k and d of the resulting matrix. The same applies to D̂ with respect to D so that D̂
is a diagonal matrix whose diagonal is still the diagonal of D but with σk and σd
trading places in it. It follows then by 3) of Proposition 3 that

tr(WD) = tr(Ŵ D̂) ≤∑d
j=1,j 6=k σj − σk. �

In the following two propositions and corollary, matrices of maximal trace over

rotation (orthogonal) matrices are characterized.

Proposition 5: If A is a d× d symmetric matrix, then

1) If A is positive semidefinite (this is equivalent to each eigenvalue of A being

nonnegative), then det(A) ≥ 0 and A is of maximal trace over orthogonal

matrices, and therefore over rotation matrices.

2) If A has exactly one negative eigenvalue, the absolute value of this eigen-

value being at most as large as any of the other eigenvalues, then det(A) < 0
and A is of maximal trace over rotation matrices.

Proof: Since A is a symmetric matrix, there are d × d matrices V and D, real

numbers αj , j = 1, . . . , d, V orthogonal, D = diag{α1, . . . , αd}, with A =

V TDV so that tr(A) = tr(D) =
∑d

j=1 αj , the αj’s the eigenvalues of A.
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If A is positive semidefinite, then αj ≥ 0, j = 1, . . . , d, and det(A) ≥ 0.

Let W be a d× d orthogonal matrix. Then by 1) of Proposition 3

tr(WA) = tr(WV TDV ) = tr(V WV TD) ≤∑d
j=1 αj = tr(A)

and therefore statement 1) holds.

If A has exactly one negative eigenvalue, the absolute value of this eigenvalue

being at most as large as any of the other eigenvalues, let k, 1 ≤ k ≤ d, be such

that αk < 0, |αk| ≤ αj , j = 1, . . . , d, j 6= k. Clearly det(A) < 0.

Let σj = αj , j = 1 . . . , d, j 6= k, σk = −αk, and D̂ = diag{σ1, . . . , σd}.

Let G be the orthogonal matrix with entries gil, i, l = 1, . . . , d, among which, the

nonzero entries are given by

gmm = 1, m = 1, . . . , d, m 6= k, gkk = −1.

Note det(G) = −1, G−1 = GT = G, D̂ = GD.

Let U be a d× d rotation matrix. Letting W = V UV TG, then det(W ) = −1.

By Proposition 4, then

tr(UA) = tr(UV TDV ) = tr(V UV TD) = tr(V UV TGGD) = tr(WD̂)

≤
∑d

j=1,j 6=k σj − σk =
∑d

j=1 αj = tr(A) as −σk = αk

and therefore statement 2) holds. �

Proposition 6: If A is a d × d matrix of maximal trace over orthogonal matrices,

then A is a symmetric matrix and as such it is positive semidefinite.

On the other hand, if A is a d × d matrix of maximal trace over rotation matrices,

then A is a symmetric matrix and

1) If det(A) = 0, then A is positive semidefinite (this is equivalent to each

eigenvalue of A being nonnegative).

2) If det(A) > 0, then A is positive definite (this is equivalent to each eigen-

value of A being positive).

3) If det(A) < 0, then A has exactly one negative eigenvalue, and the absolute

value of this eigenvalue is at most as large as any of the other eigenvalues.

Proof: That A is symmetric for all cases follows from Proposition 2. Accordingly,

there are d × d matrices V and D, real numbers αj , j = 1, . . . , d, V orthogonal,

D = diag{α1, . . . , αd}, with A = V TDV so that tr(A) = tr(D) =
∑d

j=1 αj ,

the αj’s the eigenvalues of A.

Assume A is of maximal trace over orthogonal matrices and A is not positive

semidefinite.

Then A must have a negative eigenvalue.

Accordingly, let k, 1 ≤ k ≤ d, be such that αk < 0, and let σj = αj , j = 1, . . . , d,

j 6= k, σk = −αk, D̂ = diag{σ1, . . . , σd}.

Let G be the orthogonal matrix with entries gih, i, h = 1, . . . , d, among which, the
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nonzero entries are given by

gmm = 1, m = 1, . . . , d, m 6= k, gkk = −1.

Note GD = D̂ so that letting U = V TGV , then U is orthogonal and

tr(UA) = tr(V TGV V TDV ) = tr(GD) = tr(D̂) =
∑d

j=1 σj >
∑d

j=1 αj =

tr(A) as σk > αk which contradicts that A is of maximal trace over orthogonal

matrices. Thus, it must be that A is positive semidefinite and therefore the first part

of the proposition holds.

Assume now A is of maximal trace over rotation matrices.

Before proceeding with the rest of the proof, we define some matrices and numbers

that are used repeatedly throughout the proof in the same manner, and make some

observations about them.

Accordingly, let k, l, k 6= l, 1 ≤ k, l ≤ d, be given, and let σj = αj , j = 1, . . . , d,

j 6= k, j 6= l, σk = −αk, σl = −αl, D̂ = diag{σ1, . . . , σd}.

Let G be the orthogonal matrix with entries gih, i, h = 1, . . . , d, among which, the

nonzero entries are given by

gmm = 1, m = 1, . . . , d, m 6= k, m 6= l, gkk = gll = −1.

Note det(G) = 1 and GD = D̂ so that letting U = V TGV , then det(U) = 1

and tr(UA) = tr(V TGV V TDV ) = tr(GD) = tr(D̂) =
∑d

j=1 σj .

If det(A) = 0, assume A is not positive semidefinite. Then A must have an

eigenvalue equal to zero and a negative eigenvalue. Accordingly, let k, l, k 6= l,
1 ≤ k, l ≤ d, be such that αk = 0, αl < 0.

With U and σj , j = 1, . . . , d, as defined above, note σk = αk = 0, σl > αl, so that

tr(UA) =
∑d

j=1 σj >
∑d

j=1 αj = tr(A) which contradicts that A is of maximal

trace over rotation matrices. Thus, it must be that A is positive semidefinite and

therefore statement 1) holds.

If det(A) > 0, assume A is not positive definite. Then A must have an even num-

ber of negative eigenvalues. Accordingly, let k, l, k 6= l, 1 ≤ k, l ≤ d, be such that

αk < 0, αl < 0.

With U and σj , j = 1, . . . , d, as defined above, note σk > αk, σl > αl, so that

tr(UA) =
∑d

j=1 σj >
∑d

j=1 αj = tr(A) which contradicts that A is of maximal

trace over rotation matrices. Thus, it must be that A is positive definite and there-

fore statement 2) holds.

If det(A) < 0, then A has at least one negative eigenvalue. Assume first A has

more than one negative eigenvalue. Accordingly, let k, l, k 6= l, 1 ≤ k, l ≤ d, be

such that αk < 0, αl < 0.

With U and σj , j = 1, . . . , d, as defined above, note σk > αk, σl > αl, so that
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tr(UA) =
∑d

j=1 σj >
∑d

j=1 αj = tr(A) which contradicts that A is of maxi-

mal trace over rotation matrices. Thus, it must be that A has exactly one negative

eigenvalue.

Assume now that the absolute value of the only negative eigenvalue of A is larger

than some other (nonnegative) eigenvalue of A. Accordingly, let k, l, k 6= l,
1 ≤ k ≤ d, be such that αk < 0 so that αk is the only negative eigenvalue

of A, and |αk| > αl ≥ 0.

With U and σj , j = 1, . . . , d, as defined above, note σk + σl > 0 > αk + αl, so

that tr(UA) =
∑d

j=1 σj >
∑d

j=1 αj = tr(A) which contradicts that A is of max-

imal trace over rotation matrices. Thus, it must be that A has exactly one negative

eigenvalue, and the absolute value of this eigenvalue is at most as large as any of

the other eigenvalues, and therefore statement 3) holds. �

Corollary 1: Let A be a d × d matrix. A is of maximal trace over orthogonal

matrices if and only if A is symmetric and as such it is positive semidefinite.

On the other hand, A is of maximal trace over rotation matrices if and only if A is

symmetric and has at most one negative eigenvalue, which, if it exists, is no larger

in absolute value than the other eigenvalues of A. Consequently, if A is of maximal

trace over rotation (orthogonal) matrices, then the trace of A is nonnegative.

Proof: The sufficiency and necessity of the two characterizations follow from

Proposition 5 and Proposition 6, respectively. The last part follows from the char-

acterizations and the fact that the trace of any matrix equals the sum of its eigen-

values. �

We note the characterization above involving orthogonal matrices is well known.

See [6], page 432. We also note the characterization above involving rotation ma-

trices is the main result of this paper.

Due to the characterization above involving rotation matrices, Proposition 7 and

Proposition 8 that follow, provide, respectively, ways of determining whether a

symmetric matrix is of maximal trace over rotation matrices for d = 2 and d = 3.

Proposition 7: Let A be a 2 × 2 symmetric matrix. Then the trace of A is non-

negative if and only if A has at most one negative eigenvalue, which, if it exists, is

no larger in absolute value than the other eigenvalue of A. Thus, the trace of A is

nonnegative if and only if A is of maximal trace over rotation matrices.

Proof: Let α, β be the eigenvalues of A. If α < 0 and β < 0, then α + β < 0,

and if α < 0, β ≥ 0 and |α| > β, or β < 0, α ≥ 0 and |β| > α, then α + β < 0.

Also, if α+ β < 0, then either α < 0 and β < 0, or α < 0, β ≥ 0 and |α| > β, or

β < 0, α ≥ 0 and |β| > α. It is clear then that α + β is nonnegative if and only

if at most one of α, β is negative, in which case the one that is negative must be at
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most as large as the other one in absolute value.

The last part of the proposition follows then from Corollary 1. �

Proposition 8: Let A be a 3× 3 symmetric matrix and let S = tr(A)I −A, where

I is the 3 × 3 identity matrix. Then S is positive semidefinite if and only if A has

at most one negative eigenvalue, which, if it exists, is no larger in absolute value

that the other two eigenvalues of A. Thus, S is positive semidefinite if and only if

A is of maximal trace over rotation matrices.

Proof:. Clearly S is a symmetric matrix. Let α, β, γ be the eigenvalues of A. Then

the eigenvalues of S are α+β, β+γ, γ+α. We only show α+β is. Accordingly,

let w 6= 0 be a point in R
3 such that Aw = γw. Then Sw = (tr(A)I − A)w =

(α+ β + γ)w − γw = (α+ β)w. Thus, α+ β is.

If, say α < 0 and β < 0, then α + β < 0, and if, say α < 0, β ≥ 0 and |α| > β,

or β < 0, α ≥ 0 and |β| > α, then α+ β < 0. Also, if, say α+ β < 0, then either

α < 0 and β < 0, or α < 0, β ≥ 0 and |α| > β, or β < 0, α ≥ 0 and |β| > α. It

is clear then that α+ β, β + γ, γ +α are nonnegative if and only if at most one of

α, β, γ is negative, in which case the one that is negative must be at most as large

as the other two in absolute value.

The last part of the proposition follows then from Corollary 1. �

Let A be a d× d symmetric matrix and let S = tr(A)I − A, where I is the d× d
identity matrix. Proposition 8 shows that for d = 3 a sufficient and necessary

condition for A to be of maximal trace over rotation matrices is that S be positive

semidefinite. The next proposition shows, in particular, that for any d, if d is odd,

then a necessary condition for A to be of maximal trace over rotation matrices is

that S be positive semidefinite.

Proposition 9: For d odd, if A is a d× d symmetric matrix and S = tr(A)I −A,

where I is the d× d identity matrix, then

1) If A is of maximal trace over rotation matrices, then S is positive semidefi-

nite.

2) S fails to be positive semidefinite if and only if there exists a rotation matrix

V such that V = 2vvT −I for some vector v ∈ R
d, ‖v‖ = 1, and tr(V A) >

tr(A).

Proof: Assume A is of maximal trace over rotation matrices. If S is not positive

semidefinite, then there is a vector v ∈ R
d, ‖v‖ = 1, such that

vTSv = vT (tr(A)I −A)v < 0.

Then vT tr(A)Iv − vTAv < 0 so that vTAv > tr(A)vT v = tr(A).
Let V = 2vvT −I . Then −V is a Householder reflection matrix [10] which is well

known to be a symmetric orthogonal matrix of determinant equal to negative one.
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Thus, as d is odd it must be that det(V ) = 1 so that V is a rotation matrix.

Note V A = (2vvT − I)A = 2vvTA−A so that

tr(V A) = 2tr(vvTA)− tr(A) = 2tr(vTAv)− tr(A)

= 2vTAv − tr(A) > 2tr(A)− tr(A) = tr(A)

which contradicts A is of maximal trace over rotation matrices. Thus, S must be

positive semidefinite and therefore statement 1) holds.

From the proof of 1) it is clear that 2) holds. �

We note the rest of this section is mostly concerned with results about 3× 3 matri-

ces to be used in Section 5 for accomplishing the three-dimensional aspect of the

secondary goal of this paper: identifying alternative ways, other than the SVD, of

obtaining solutions to the problems of interest.

In what follows, when dealing with three-dimensional rotation matrices, given one

such matrix, say W , W will be specified by an axis of rotation w, where w is a unit

vector in R
3, and a rotation angle θ, 0 ≤ θ ≤ π, where θ corresponds to a rotation

angle around the axis of rotation in a counterclockwise direction. The direction

of the axis of rotation w is determined by the right-hand rule, i.e., the direction in

which the thumb points while curling the other fingers of the right hand around

the axis of rotation with the curl of the fingers representing a movement in the θ
direction. Accordingly, given a 3×3 rotation matrix W with axis of rotation w and

rotation angle θ as just described, assuming w = (wx, wy, wz)
T , it is well known

that

W =

(

cos θ+w
2
x(1−cosθ) wxwy(1−cos θ)−wz sin θ wxwz(1−cos θ)+wy sin θ

wywx(1−cosθ)+wz sin θ cos θ+w
2
y(1−cos θ) wywz(1−cos θ)−wx sin θ

wzwx(1−cosθ)−wy sin θ wzwy(1−cos θ)+wx sin θ cos θ+w
2
z(1−cos θ)

)

.

Note W = I for θ = 0, I the 3 × 3 identity matrix, W = 2wwT − I for θ = π,

and that given a 3× 3 symmetric matrix A

A =





a11 a12 a13
a21 a22 a23
a31 a32 a33





then it is not hard to show that

tr(WA) = (a11 + a22 + a33) cos θ + (a11w
2
x + a22w

2
y + a33w

2
z

+2a12wxwy + 2a13wxwz + 2a23wywz)(1− cos θ)

= tr(A) cos θ + wTAw(1 − cos θ).

Thus, tr(WA) is an affine combination of tr(A) and wTAw, where θ goes from

0 to π. It follows then that tr(WA) achieves its minimum and maximum at either
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θ = 0 or θ = π, and if it achieves its minimum (maximum) at θ = 0 then it must

achieve its maximum (minimum) at θ = π and vice versa.

Together with 2) of Proposition 9, the following proposition provides another way

of proving that if S of Proposition 8 is positive semidefinite, then matrix A of the

same proposition is of maximal trace over rotation matrices.

Proposition 10: If A is a 3 × 3 symmetric matrix and W is any 3 × 3 rotation

matrix with axis of rotation w such that tr(WA) > tr(A), then among all rotation

matrices Ŵ with axis of rotation w, Ŵ = 2wwT − I maximizes tr(ŴA) by a

rotation of π radians. In particular, for this Ŵ , tr(ŴA) ≥ tr(WA) > tr(A).

Proof: Because tr(WA) > tr(A), then among all rotation matrices Ŵ with axis

of rotation w, Ŵ = I (θ = 0) must minimize tr(ŴA) so that then Ŵ = 2wwT −I

(θ = π) must maximize tr(ŴA). �

Given a 3 × 3 symmetric matrix A that is not of maximal trace over rotation ma-

trices, the following proposition shows how to compute a 3 × 3 rotation matrix

W such that WA is of maximal trace over rotation matrices if a unit eigenvector

corresponding to the largest eigenvalue of A is known.

Proposition 11: Let A be a 3 × 3 symmetric matrix that is not of maximal trace

over rotation matrices. Let σ be the largest eigenvalue of A, and w a unit vector

in R
3 that is an eigenvector of A corresponding to σ. Let W = 2wwT − I . Then

WA is of maximal trace over rotation matrices.

Proof: Let V be any rotation matrix and let v and θ be the rotation axis and

rotation angle associated with V , respectively. Assume tr(V A) > tr(A) and

tr(V A) ≥ tr(V̂ A) for all rotation matrices V̂ with v as the axis of rotation. Then

as above it must be that tr(V A) = tr(A) cos θ+vTAv(1−cos θ) with either θ = 0
or θ = π.

If θ = 0, then tr(V A) = tr(A), a contradiction, thus it must be that θ = π so

that V = 2vvT − I and tr(V A) = −tr(A) + 2vTAv.

Accordingly, we look for a rotation matrix W with axis of rotation w, such that

tr(WA) ≥ tr(V A) for all rotation matrices V , in particular any V with tr(V A) >
tr(A) and any V with axis of rotation w. Thus, if W exists, it must be that

W = 2wwT − I , v = w maximizing vTAv.

Let σ be the largest eigenvalue of A and let w be a unit eigenvector of A corre-

sponding to σ. Then it is well known [10] that v = w maximizes vTAv (σ the

maximum value of vTAv). Thus W = 2wwT − I is as required. �

Given a d× d symmetric matrix A, the following proposition shows how to com-

pute a d × d rotation matrix W such that WA is of maximal trace over rotation

matrices if an orthogonal diagonalization of A is known.
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Proposition 12: Let A be a d × d symmetric matrix. Let V , D be d × d matri-

ces such that V is orthogonal, D = diag{α1, . . . , αd} with αj , j = 1, . . . , d, the

eigenvalues of A, and A = V TDV . Define a set of integers H by

H = {i | αi < 0, i = 1, . . . , d}.

If H has an odd number of elements, let k = argminj{|αj |, j = 1, . . . , d}. If

k ∈ H let H = H \ {k}. Otherwise, let H = H ∪ {k}. Let G be the d × d
orthogonal matrix with entries glh, l, h = 1, . . . , d, among which, the nonzero

entries are given by

gmm = 1, m = 1, . . . , d, m 6∈ H, gmm = −1, m = 1, . . . , d, m ∈ H.

Let W = V TGV . Then W is a d× d rotation matrix and WA is of maximal trace

over rotation matrices.

Proof: Note det(G) = 1 as H is empty or has an even number of elements. Thus

det(W ) = 1 as well. Letting D̂ = GD, then D̂ is a diagonal matrix with at most

one negative element in the diagonal, which, if it exists, is no larger in absolute

value than the other elements of the diagonal. Thus V T D̂V must be of maxi-

mal trace over rotation matrices. But WA = V TGV A = V TGV V TDV ) =

V TGDV = V T D̂V . Thus, WA is of maximal trace over rotation matrices. �

4. The Two-Dimensional Case: Computation without SVD

In the two-dimensional case, it is possible to determine solutions to the problems

of interest in closed form that do not require the SVD method, i.e., the Kabsch-

Umeyama algorithm. Suppose P = {p1, . . . , pn}, Q = {q1, . . . , qn} are each

sets of n points in R
2, and W = {w1, . . . , wn} is a set of n nonnegative num-

bers (weights). First we look at the problem of minimizing ∆(P,Q,U), i.e., of

finding a 2 × 2 rotation matrix U for which ∆(P,Q,U) is as small as possible.

As we will see, the problem of minimizing ∆(P,Q,W,U) can be approached in

a similar manner with some minor modifications. Here, for the sake of complete-

ness, we first obtain the solutions through a direct minimization of ∆(P,Q,U) and

∆(P,Q,W,U) that takes advantage of various trigonometric identities and of the

representation of the points in terms of polar coordinates. However, as demon-

strated toward the end of this section, the trace maximization approach developed

in Section 2 produces the same solutions with a lot of less effort.

For each i, i = 1, . . . , n, let pi and qi be given in polar coordinates as pi = (si, σi),
qi = (ri, ρi), where the first coordinate denotes the distance from the point to the

origin and the second denotes the angle (in radians) from the positive first axis to



16 Javier Bernal and Jim Lawrence

the ray through the point from the origin. Clearly si, ri ≥ 0, 0 ≤ σi, ρi < 2π,

and if pi = (xi, yi), qi = (x′i, y
′
i), in rectangular coordinates, then xi = si cos σi,

yi = si sinσi, x
′
i = ri cos ρi, y

′
i = ri sin ρi.

It is well known that if U is a rotation matrix by θ radians in the counterclockwise

direction, 0 ≤ θ < 2π, then

U =
(

cos θ − sin θ
sin θ cos θ

)

.

Thus, using column vectors to perform the matrix multiplication

Uqi = U
(

x′i, y
′
i

)T
=
(

x′i cos θ − y′i sin θ, x
′
i sin θ + y′i cos θ

)T

=
(

ri cos ρi cos θ − ri sin ρi sin θ, ri cos ρi sin θ + ri sin ρi cos θ
)T

=
(

ri cos(ρi + θ), ri sin(ρi + θ)
)T

and

∆(P,Q,U) =

n
∑

i=1

||Uqi − pi||2

=
n
∑

i=1

(

(ri cos(ρi + θ)− si cos σi)
2 + (ri sin(ρi + θ)− si sinσi)

2
)

=
n
∑

i=1

(

r2i cos
2(ρi + θ)− 2risi cos(ρi + θ) cos σi + s2i cos

2 σi

+ r2i sin
2(ρi + θ)− 2risi sin(ρi + θ) sinσi + s2i sin

2 σi
)

=
n
∑

i=1

(

r2i − 2risi(cos(ρi + θ) cosσi + sin(ρi + θ) sinσi) + s2i
)

=

n
∑

i=1

(

r2i − 2risi(cos(ρi + θ) cos(−σi)− sin(ρi + θ) sin(−σi)) + s2i
)

=

n
∑

i=1

(

r2i − 2risi cos(ρi + θ − σi) + s2i
)

.
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Letting this last expression, which is equal to ∆(P,Q,U), be denoted by f(θ),
then

f(θ) =
n
∑

i=1

(

r2i − 2risi cos(ρi − σi + θ) + s2i
)

=

n
∑

i=1

(

r2i + s2i
)

− 2

n
∑

i=1

risi cos(ρi − σi + θ)

=

n
∑

i=1

(

r2i + s2i
)

− 2

n
∑

i=1

risi
(

cos(ρi − σi) cos θ − sin(ρi − σi) sin θ
)

=
n
∑

i=1

(

r2i + s2i
)

− a cos θ + b sin θ

where

a = 2

n
∑

i=1

risi cos(ρi − σi)

and

b = 2

n
∑

i=1

risi sin(ρi − σi).

Note that in terms of the rectangular coordinates of the points pi, qi

a = 2

n
∑

i=1

risi cos(ρi − σi) = 2

n
∑

i=1

risi(cos ρi cos σi + sin ρi sinσi)

= 2

n
∑

i=1

(ri cos ρisi cosσi + ri sin ρisi sinσi) = 2

n
∑

i=1

(x′ixi + y′iyi)

= 2
n
∑

i=1

(xi, yi) · (x′i, y′i)

and

b = 2
n
∑

i=1

risi sin(ρi − σi) = 2
n
∑

i=1

risi(sin ρi cos σi − cos ρi sinσi)

= 2

n
∑

i=1

(ri sin ρisi cos σi − ri cos ρisi sinσi) = 2

n
∑

i=1

(y′ixi − x′iyi)

= 2

n
∑

i=1

∣

∣

∣

xi x
′
i

yi y′i

∣

∣

∣
.
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For each i, i = 1, . . . , n, letting Di be the dot product of pi and qi, then a can be

described as twice the sum of the Di’s. On the other hand, for each i, i = 1, . . . , n,

letting Ai be the signed area of the parallelogram spanned by the vectors ~0pi, ~0qi,
where the area is positive if the angle in a counterclockwise direction from ~0pi to
~0qi is between 0 and π, zero or negative otherwise, then b can be described as twice

the sum of the Ai’s.

Theorem 1: Let a =
∑n

i=1 x
′
ixi +

∑n
i=1 y

′
iyi and b =

∑n
i=1 y

′
ixi −

∑n
i=1 x

′
iyi.

If a = b = 0, then U = I , I the 2 × 2 identity matrix, minimizes ∆(P,Q,U).

Otherwise, with c =
√
a2 + b2 and

Û =

(

a/c b/c
−b/c a/c

)

then U = Û minimizes ∆(P,Q,U).

Proof: If a = b = 0, with f as derived above, then f(θ) =
∑n

i=1

(

r2i + s2i
)

, i.e.,

f(θ) is constant so that ∆(P,Q,U) is constant as well, i.e., it has the same value

for all rotation matrices U . Thus, any θ minimizes f(θ), in particular θ = 0, and

therefore U = I , I the 2× 2 identity matrix, minimizes ∆(P,Q,U).
Otherwise, f ′(θ) = a sin θ + b cos θ.

Since a y + b x = 0 is the equation of a straight line L through the origin, then L
must cross the unit circle at two points that are antipodal of each other, and it is

easy to verify that these points are (x, y) = (a/c,−b/c) and (x, y) = (−a/c, b/c).
Since every point on the unit circle is of the form (cos θ, sin θ) for some θ, 0 ≤
θ < 2π, then for some θ1, θ2, 0 ≤ θ1, θ2 < 2π, it must be that (a/c,−b/c) =
(cos θ1, sin θ1) and (−a/c, b/c) = (cos θ2, sin θ2). Clearly, f ′(θ1) = f ′(θ2) = 0.

Noting f ′′(θ) = a cos θ−b sin θ, then f ′′(θ1) = a(a/c)−b(−b/c) = a2/c+b2/c >
0, and f ′′(θ2) = a(−a/c)− b(b/c) = −a2/c− b2/c < 0.

Thus, f(θ1) is a local minimum of f on [0, 2π) so that by the differentiability

and periodicity of f it is a global minimum of f and, therefore, U = Û mini-

mizes ∆(P,Q,U). �

With minor modifications due to the weights, arguing as above, a similar result can

be obtained for the more general problem.

Theorem 2: Let a =
∑n

i=1wix
′
ixi +

∑n
i=1wiy

′
iyi and b =

∑n
i=1wiy

′
ixi −

∑n
i=1 wix

′
iyi. If a = b = 0, then U = I , I the 2 × 2 identity matrix, mini-

mizes ∆(P,Q,W,U). Otherwise, with c =
√
a2 + b2 and

Û =

(

a/c b/c
−b/c a/c

)

then U = Û minimizes ∆(P,Q,W,U).
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Proof: The same as that of Theorem 1 with minor modifications. �

Finally, let

a11 =

n
∑

i=1

wix
′
ixi, a22 =

n
∑

i=1

wiy
′
iyi, a21 =

n
∑

i=1

wiy
′
ixi, a12 =

n
∑

i=1

wix
′
iyi

and note with a and b as above that a = a11 + a22, b = a21 − a12.

If

A = ( a11 a12
a21 a22 )

then minimizing ∆(P,Q,W,U) is equivalent, as observed in Section 2, to maxi-

mizing tr(UA) over all 2 × 2 rotation matrices U , where if U is a rotation matrix

by θ radians in a counterclockwise direction, 0 ≤ θ < 2π, then

U =
(

cos θ − sin θ
sin θ cos θ

)

.

Note then that

tr(UA) = (a11 cos θ − a21 sin θ) + (a12 sin θ + a22 cos θ)
= (a11 + a22) cos θ − (a21 − a12) sin θ = a cos θ − b sin θ

so that by using the trace maximization approach, we have essentially derived the

function f , previously derived above, with a lot of less effort.

Note that if a = b = 0, then clearly a11 = −a22 and a21 = a12. Also as established

above it must be that ∆(P,Q,W,U) has the same value for all rotation matrices

U , and, therefore, so does tr(UA).
Thus, it is no coincidence that given any arbitrary θ, 0 ≤ θ < 2π, if U is the

rotation matrix by θ radians in a counterclockwise direction, then

tr(UA) = (a11 cos θ − a21 sin θ) + (a21 sin θ − a11 cos θ) = 0, i.e., tr(UA) = 0
for all rotation matrices U .

Also (a11 sin θ + a21 cos θ)− (a21 cos θ + a11 sin θ) = 0, so that UA is indeed a

symmetric matrix.

On the other hand, if a 6= 0 or b 6= 0, with c =
√
a2 + b2, then U = Û that

minimizes ∆(P,Q,W,U) in Theorem 2 above must maximize tr(UA) and the

maximum is

tr(ÛA) = a11(a/c)− a21(−b/c) + a12(−b/c) + a22(a/c)
= (a11+a22)(a/c)+ (a21−a12)(b/c) = a(a/c)+ b(b/c) = (a2+ b2)/c = c > 0
which is nonnegative, actually positive, as expected according to Corollary 1 of

Section 3.

We also have the relation a11(−b/c) + a21(a/c) − a12(a/c) + a22(−b/c)

= (a11 + a22)(−b/c) + (a21 − a12)(a/c) = −ab/c + ba/c = 0, so that ÛA is

indeed a symmetric matrix.
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5. The Three-Dimensional Case: Computation without SVD

Given a real 3 × 3 matrix M that is not of maximal trace over rotation matrices,

in this section, if the matrix M is symmetric, we present an approach that does not

use the SVD method, i.e., the Kabsch-Umeyama algorithm, for computing a 3× 3
rotation matrix U such that UM is of maximal trace over rotation matrices. This

approach, which is based on a trigonometric identity, is a consequence of Propo-

sition 11 in Section 3, and if the matrix M is not symmetric, part of it can still

be used to produce the usual orthogonal matrices necessary to carry out the SVD

method. Being able to find such a matrix U for a matrix M , not necessarily sym-

metric, is what is required to solve Wahba’s problem, not only for 3 × 3 matrices,

but also for d × d matrices for any d, d ≥ 2. As described in Section 1 and Sec-

tion 2 of this paper, in Wahba’s problem the number ∆(P,Q,W,U) is minimized,

where P = {pi}, Q = {qi}, i = 1, . . . , n, are each sets of n points in R
d, and

W = {wi}, i = 1, . . . , n, is a set of n nonnegative weights. Accordingly, in the

three-dimensional version of the problem, the points pi, qi are then of the form

pi = (xi, yi, zi), qi = (x′i, y
′
i, z

′
i), i = 1, . . . , n, and with

m11 =

n
∑

i=1

wix
′
ixi, m12 =

n
∑

i=1

wix
′
iyi, m13 =

n
∑

i=1

wix
′
izi

m21 =

n
∑

i=1

wiy
′
ixi, m22 =

n
∑

i=1

wiy
′
iyi, m23 =

n
∑

i=1

wiy
′
izi

m31 =
n
∑

i=1

wiz
′
ixi, m32 =

n
∑

i=1

wiz
′
iyi, m33 =

n
∑

i=1

wiz
′
izi

the 3× 3 matrix of interest M is then

M =





m11 m12 m13

m21 m22 m23

m31 m32 m33



 .

If M is a symmetric matrix, in this approach we refer to M by the name A to

signify that A (= M) is symmetric, and if A is not of maximal trace over rotation

matrices, a 3× 3 rotation matrix R is computed without using the SVD method in

such a way that RA is of maximal trace over rotation matrices. We note that before

trying to compute R, the matrix A should be tested for the maximality of the trace.

This can be done as a consequence of Proposition 8 in Section 3, i.e., by testing

whether S = tr(A)I − A is positive semidefinite, where I is the 3 × 3 identity

matrix. It is well known that a square matrix is positive semidefinite if and only if
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all its principal minors are nonnegative. Since positive definiteness implies posi-

tive semidefiniteness, and because a square matrix is positive definite if and only

if all its leading principal minors are positive, we test the matrix first for positive

definiteness as a 3 × 3 matrix has seven principal minors of which only three are

of the leading kind. On the other hand, if the matrix M is not symmetric, part of

the approach can still be used on A = MTM which is symmetric, to produce the

usual orthogonal matrices necessary to carry out the SVD method.

The approach which we present next is a consequence of Proposition 11 in Sec-

tion 3. According to the proposition, if A (= M) is a 3× 3 symmetric matrix that

is not of maximal trace over rotation matrices, then in order to obtain a 3× 3 rota-

tion matrix R so that RA is of maximal trace over rotation matrices, it suffices to

compute R = 2r̂ r̂T − I , where r̂ is a unit vector in R
3 that is an eigenvector of A

corresponding to the largest eigenvalue of A. In our approach, the computation of

r̂, and, if necessary, the computation of all eigenvectors of A = MTM (to carry

out the SVD method if M is not symmetric), is essentially as presented in [5, 13].

We note that a nice alternative method can be found in [12] which is a two-step

procedure based on a vector parametrization of the group of three-dimensional ro-

tations. Following ideas in [5,13], we accomplish our purpose by taking advantage

of a 3× 3 matrix B that is a linear combination of A and I in the appropriate man-

ner so that the characteristic polynomial of B is such that it allows the application

of a trigonometric identity in order to obtain its roots in closed form and thus those

of the characteristic polynomial of A.

Thus, let A be a 3 × 3 symmetric matrix (we do not assume A is not of maximal

trace over rotation matrices at this point)

A =





a11 a12 a13
a21 a22 a23
a31 a32 a33



 .

It is well known that if A is just any 3× 3 matrix, the characteristic polynomial of

A is

f(α) = det(αI −A) = α3 − α2tr(A)− α1/2(tr(A2)− tr2(A))− det(A).

Given numbers p > 0 and q, we define a 3×3 matrix B by B = (A−qI)/p so that

A = pB+ Iq. Note that if v is an eigenvector of A corresponding to an eigenvalue

α of A, i.e., Av = αv, then Bv = ((α − q)/p)v so that v is an eigenvector of B
corresponding to the eigenvalue (α− q)/p of B. Conversely, if v is an eigenvector

of B corresponding to an eigenvalue β of B, i.e., Bv = βv, then Av = (pβ + q)v
so that v is an eigenvector of A corresponding to the eigenvalue pβ+q of A. Thus,

A and B have the same eigenvectors.
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Let q = tr(A)/3 and p = (tr((A− qI)2)/6)1/2. Then p ≥ 0.

We treat p = 0 as a special case so that then we can assume p > 0 as required.

Accordingly, we note that p = 0 if and only if tr((A − qI)2) = 0, and since it is

readily shown that A is a symmetric matrix, then

(a11 − q)2 + (a22 − q)2 + (a33 − q)2 + 2a212 + 2a213 + 2a223 = 0.

Thus a11 = a22 = a33 = q and a12 = a21 = a13 = a31 = a23 = a32 = 0 so that

A = diag{q, q, q} and q is therefore the only eigenvalue (a multiple eigenvalue)

of A.

Assuming now p > 0 as required, then, in particular, tr((A− qI)2) 6= 0.

Note

tr(B) = tr((A− qI)/p) = 1/p(tr(A)− tr(qI)) = 1/p(tr(A)−3(tr(A)/3)) = 0
and

tr(B2) = tr(((A− qI)/p)2) = tr(((A − qI)/((tr((A− qI)2)/6)1/2))2)
= tr((A− qI)2/(tr((A− qI)2)/6))
= (6/(tr((A− qI)2)))(tr((A− qI)2)) = 6.

Thus, the characteristic polynomial of B is

g(β) = det(βI −B) = β3 − 3β − det(B).

We show |det(B)| ≤ 2. The general cubic equation has the form ax3+bx2+cx+
d = 0 with a 6= 0. It is well known that the numbers of real and complex roots are

determined by the discriminant ∆ of this equation, ∆ = 18abcd − 4b3d+ b2c2 −
4ac3 − 27a2d2.

If ∆ > 0, then the equation has three distinct real roots.

If ∆ = 0, then it has a multiple root and all of its roots are real.

If ∆ < 0, then it has one real root and two complex conjugate roots.

For g above, a = 1, b = 0, c = −3, d = −det(B), and since B is clearly a

symmetric matrix, then it has three real roots.

Thus ∆ = −4(−3)3 − 27(−det(B))2 = 4 · 27− 27(det(B))2 ≥ 0
so that (det(B))2 ≤ 4 and |det(B)| ≤ 2.

Note the first derivative of g is g′(β) = 3β2 − 3 and g′(β) = 0 at β = −1 and

β = 1. The second derivative is g′′(β) = 3β and g′′(−1) = −3, g′′(1) = 3, so

that g has a local maximum at β = −1 and a local minimum at β = 1.

Note as well g(−2) = g(1) = −2−det(B), g(−1) = g(2) = 2−det(B) so that it

is not hard to see that for −2 < det(B) < 2, g alternates enough between positive

and negative values to have three distinct roots as predicted by its discriminant, all

in the interval (−2, 2). Similarly, for det(B) = −2 and det(B) = 2, it is not hard

to see that g has two roots, one multiple, also as predicted by its discriminant, both

in the interval [−2, 2].
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Let β1, β2, β3 be the three roots of g, −2 ≤ β1 ≤ β2 ≤ β3 ≤ 2.

For θ ∈ [0, π], define h : [0, π] → [−2, 2] by h(θ) = 2 cos θ. Clearly h is one-

to-one and onto, h(0) = 2, h(π) = −2, so that numbers θ1, θ2, θ3 exist such that

π ≥ θ1 ≥ θ2 ≥ θ3 ≥ 0, h(θ1) = β1, h(θ2) = β2, h(θ3) = β3.

Thus, g(h(θ)) = (2 cos θ)3−3(2 cos θ)−det(B) = 2(4 cos3 θ−3 cos θ)−det(B)
has roots θ1, θ2, θ3 as just described, and since cos 3θ = 4cos3 θ − 3 cos θ, then

g(h(θ)) = 2 cos 3θ−det(B) so that cos 3θ = det(B)/2 at θ = θ1, θ2, θ3. As then

it must be that 0 ≤ 3θ3 ≤ π ≤ 3θ2 ≤ 2π ≤ 3θ1 ≤ 3π, it follows that

3θ3 = arccos(det(B)/2), 3θ2 = 2π − 3θ3, 3θ1 = 2π + 3θ3.

Thus, θ3 = arccos(det(B)/2)/3, θ2 = 2π/3 − θ3, θ1 = 2π/3 + θ3, from which

βk, αk, k = 1, 2, 3, the eigenvalues of B and A, respectively, can be computed as

βk = 2cos θk, and αk = pβk + q, k = 1, 2, 3. As β3 is the largest eigenvalue of B
and since p > 0, then α3 must be the largest eigenvalue of A.

From this discussion the next theorem follows.

Theorem 3: Let A be a 3× 3 symmetric matrix. Let aij , i, j = 1, 2, 3, be the en-

tries of A. With I the 3×3 identity matrix, let q = tr(A)/3 = (a11+a22+a33)/3,

p = (tr((A−qI)2)/6)1/2 = (((a11−q)2+(a22−q)2+(a33−q)2+2a212+2a213+

2a223)/6)
1/2. If p = 0, then A = diag{q, q, q} and letting αk = q, k = 1, 2, 3,

then αk, k = 1, 2, 3, are the eigenvalues (the same eigenvalue) of A. Otherwise, let

B = (A−qI)/p. Let θ3 = arccos(det(B)/2)/3, θ2 = 2π/3−θ3, θ1 = 2π/3+θ3.

Let αk = 2p cos θk + q, k = 1, 2, 3. Then α1 ≤ α2 ≤ α3, and αk, k = 1, 2, 3, are

the eigenvalues of A.

Finally, given an eigenvalue α of A, A a real 3 × 3 symmetric matrix, we show

how to compute an orthonormal set of eigenvectors of A that spans the eigenspace

of A corresponding to α.

For this purpose, let C = A−αI . If C is the zero matrix, then A = diag{α,α, α}
which incidentally, if A is not of maximal trace over rotation matrices, can only

happen if α < 0 by Corollary 1 of Section 3. Since any vector in R
3 is then an

eigenvector of A corresponding to the only eigenvalue α of A, then, for example,

{(1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T } is an orthonormal set of eigenvectors of A that

spans the eigenspace of A corresponding to α (the eigenspace is all of R3).

Thus, we assume C is not the zero matrix so that the null space of C is not all of

R
3, and we already know, since α is an eigenvalue of A, that the null space of C

does not consist exactly of the single point (0, 0, 0)T . Thus, the dimension of the

null space of C is either one or two. As C is clearly a symmetric matrix then its

null space is the orthogonal complement of its column space and the dimension of

its column space, therefore, can only be one or two as well.

Let c1, c2, c3 be the column vectors of C , and with × denoting the cross product

operation, let v1 = c1×c2, v2 = c2×c3, v3 = c3×c1. If one or more of the vectors
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v1, v2, v3, is not zero, i.e., is not (0, 0, 0)T , let v be one such vector. Then ‖v‖ 6= 0
and the two column vectors of C whose cross product is v span the column space

of C (the dimension of the column space of C equals two so that the dimension

of the null space of C is one). Since v is orthogonal to both, it must be that v is

in the null space of C and v̂ = v/‖v‖ is then a unit vector that is an eigenvector

of A corresponding to the eigenvalue α of A. Thus, {v̂} is an orthonormal set of

eigenvectors of A (one eigenvector) that spans the eigenspace of A corresponding

to α.

Finally, if all of v1, v2, v3 equal (0, 0, 0)T , then the dimension of the column space

of C equals one so that the dimension of the null space of C is two, and one or

more of the column vectors c1, c2, c3, is not zero, i.e., is not (0, 0, 0)T . Let u be one

such vector and let w = (1, 1, 1)T . Clearly u spans the column space of C . With

u = (u1, u2, u3)
T , let k = arg maxj{|uj |, j = 1, 2, 3}. In the vector w replace

the kth coordinate with 0. Then v1 = u×w is not (0, 0, 0)T . Thus ‖v1‖ 6= 0, v1 is

orthogonal to u, and it must be that v1 is in the null space of C and v̂1 = v1/‖v1‖
is then a unit vector that is an eigenvector of A corresponding to the eigenvalue α
of A. Furthermore, v2 = v1 × u is not (0, 0, 0)T , thus ‖v2‖ 6= 0, v2 is orthogonal

to v1 and to u, and it must be that v2 is also in the null space of C . It follows then

that v̂2 = v2/‖v2‖ is a unit vector that is an eigenvector of A orthogonal to v̂1
corresponding to the eigenvalue α of A. Thus, {v̂1, v̂2} is an orthonormal set of

eigenvectors of A that spans the eigenspace of A corresponding to α (α is of mul-

tiplicity two). Note that in this case we can actually identify a third eigenvector û
of A of unit length corresponding to the eigenvalue of A not equal to α by setting

û = u/‖u‖.

From this discussion the next theorem follows.

Theorem 4: Let A be a 3 × 3 symmetric matrix. Let α be an eigenvalue of A.

Let C = A − αI . If C is the zero matrix, then {(1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T }
is an orthonormal set of eigenvectors of A that spans the eigenspace of A cor-

responding to α (the eigenspace is all of R
3). Otherwise, let c1, c2, c3 be the

column vectors of C , and let v1 = c1 × c2, v2 = c2 × c3, v3 = c3 × c1. If

one or more of the vectors v1, v2, v3, is not zero, i.e., is not (0, 0, 0)T , let v be

one such vector. Let v̂ = v/‖v‖. Then {v̂} is an orthonormal set of eigenvec-

tors of A (one eigenvector) that spans the eigenspace of A corresponding to α.

Otherwise, if all of v1, v2, v3 equal (0, 0, 0)T , let u be one of c1, c2, c3, that is

not zero, i.e., is not (0, 0, 0)T , and let w = (1, 1, 1)T . With u = (u1, u2, u3)
T ,

let k = arg maxj{|uj |, j = 1, 2, 3}. In the vector w replace the kth coordinate

with 0 and let v1 = u × w. Let v̂1 = v1/‖v1‖. Furthermore, let v2 = v1 × u and

v̂2 = v2/‖v2‖. Then {v̂1, v̂2} is an orthonormal set of eigenvectors of A that spans

the eigenspace of A corresponding to α (α is of multiplicity two).
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Given a real 3 × 3 symmetric matrix A that is not of maximal trace over rota-

tion matrices, then α3, of computation as described in Theorem 3, is the largest

eigenvalue of A. Let r̂ be any unit eigenvector of A corresponding to the eigen-

value α3 of A, of computation as described in Theorem 4 with α = α3. Then,

by Proposition 11 in Section 3, if R = 2r̂ r̂T − I , then RA is of maximal trace

over rotation matrices. On the other hand, given a real 3 × 3 matrix M that is not

symmetric, letting A = MTM , then A is symmetric and it is A that is usually

used to compute the SVD of M . Accordingly, Theorem 3 and Theorem 4 can then

be used to compute an orthonormal basis of R3 consisting of eigenvectors of A
in the proper order which are then used to produce the usual orthogonal matrices

necessary to carry out the SVD method [10]. We note that all of the above has

been successfully implemented in Fortran. Links to the code are provided in the

next section.

6. The Three-Dimensional Case Revisited

In this section, given a 3× 3 matrix M that is not symmetric we describe a proce-

dure that uses the so-called Cayley transform [1, 3, 17] in conjunction with New-

ton’s method to find a 3× 3 rotation matrix U so that UM is symmetric, possibly

of maximal trace over rotation matrices. If the resulting UM is not of maximal

trace over rotation matrices, using the fact that UM is symmetric, another 3 × 3
rotation matrix R can then be computed (without the SVD) as described in the

previous section so that RUM is of maximal trace over rotation matrices. Since

the possibility exists that Newton’s method can fail, whenever this occurs the SVD

method is carried out as just described at the end of the previous section.

Given a d × d matrix B such that I + B is invertible, I the d × d identity matrix,

we denote by C(B) the d× d matrix

C(B) = (I −B)(I +B)−1.

The matrix C(B) is called the Cayley transform of B and it is well known [1,3,17]

that if C(B) exists, then I + C(B) is invertible so that C(C(B)) exists and it is

actually equal to B.

Letting A be any d× d skew-symmetric matrix (AT = −A), then it is well known

[1, 3, 17] that I + A is invertible, and Q = C(A) is a rotation matrix (QTQ = I ,

det(Q) = 1)). Conversely, letting Q be any d × d orthogonal matrix with I + Q
invertible, i.e., −1 is not an eigenvalue of Q, then it is also well known that A =
C(Q) is skew-symmetric. Note that −1 not being an eigenvalue of Q excludes at

least all orthogonal matrices of determinant negative one. In particular, for d = 3,

among rotation matrices, it excludes exactly all rotation matrices whose rotation
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angle equals π radians. Consequently, from the above comments, for every d × d
rotation matrix Q with I +Q invertible, there is a d× d skew-symmetric matrix A
with C(A) = Q, and for every d × d rotation matrix Q with I + Q not invertible

there is no d× d skew-symmetric matrix A with C(A) = Q.

Given a 3× 3 skew-symmetric matrix A

A =





0 r −s
−r 0 t
s −t 0





then with ∆ = 1 + r2 + s2 + t2 it is well known that

∆

2
C(A) =

∆

2
I −A+A2 =





∆
2

0 0

0 ∆
2

0

0 0 ∆
2



−





0 r −s
−r 0 t
s −t 0



+





−r2 − s2 st rt
st −r2 − t2 rs
rt rs −s2 − t2



 .

As we have seen, given a d×d matrix M and a d×d rotation matrix U , a necessary

condition for UM to be of maximal trace over rotation matrices is that UM be

symmetric. For d = 3 we use Newton’s method in the way described below on

some function g, defined below, in order to find a rotation matrix U such that UM
is symmetric, by finding a zero of g. Since U exists for which UM is of maximal

trace over rotation matrices, we know such a U exists. However, since the way

in which we use Newton’s method below is based on the Cayley transform, if

U for which UM is of maximal trace over rotation matrices is a rotation matrix

whose rotation angle equals π, then Newton’s method could run into difficulties

(the function g on which Newton’s method is used may not have a zero). That U ,

M do exist where U is a rotation matrix whose rotation angle equals π, M is not

symmetric, and UM is of maximal trace over rotation matrices, is exemplified as

follows

U =





−1 0 0
0 −1 0
0 0 1



 , M =





−2 −1 0
−1 −2 −1
0 1 2



 , UM =





2 1 0
1 2 1
0 1 2



 .

Given x = (r, s, t)T ∈ R
3, let A(x) denote the matrix A above. Let

F (x) =
(1 + r2 + s2 + t2)

2
C(A(x)).

Finally, define g : R3 → R
3 by

g(x) = (u, v, w)T
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where

F (x)M −MTF (x)T =





0 u −v
−u 0 w
v −w 0



 .

We wish to find a zero x̄ = (r̄, s̄, t̄)T of g, i.e, x̄ such that g(x̄) = (0, 0, 0). Clearly,

if δ = 1 + r̄2 + s̄2 + t̄2, then U = 2
δF (x̄) is a rotation matrix such that UM is

symmetric. For this purpose we use Newton’s method on g.

Newton’s method consists of performing a sequence of iterations based on the

function g and its Jacobian matrix J , beginning from an initial point x0 ∈ R
3

x0 = initial point in R
3

xk+1 = xk − J(xk)
−1g(xk) for k = 0, 1, 2, . . .

Given that g is sufficiently smooth and the Jacobian J of g is nonsingular at

each xk, if the initial point x0 is “sufficiently” close to a root x̄ of g, then the

sequence {xk} converges to x̄ and the rate of convergence is quadratic. Clearly,

besides the situation mentioned above, Newton’s method could also run into dif-

ficulties if the initial point x0 is not close enough to a root of g or if the Jacobian

of g is singular at some xk.

With F , x and ∆ as above, then again

F (x) =
1 + r2 + s2 + t2

2
I −A+A2 =





∆
2

0 0

0 ∆
2

0

0 0 ∆
2



−





0 r −s
−r 0 t
s −t 0



+





−r2 − s2 st rt
st −r2 − t2 rs
rt rs −s2 − t2





from which it follows that

Fr(x) =
∂F

∂r
(x) = rI −





0 1 0
−1 0 0
0 0 0



+





−2r 0 t
0 −2r s
t s 0





Fs(x) =
∂F

∂s
(x) = sI −





0 0 −1
0 0 0
1 0 0



+





−2s t 0
t 0 r
0 r −2s





Ft(x) =
∂F

∂t
(x) = tI −





0 0 0
0 0 1
0 −1 0



+





0 s r
s −2t 0
r 0 −2t



 .

With G(x) = F (x)M −MTF (x)T , for i, j = 1, 2, 3, letting G(x)i,j be the entry
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of G(x) in its ith row and jth column, then g(x) = (G(x)12, G(x)31, G(x)23).
Finally, with Gr(x), Gs(x), Gt(x) the partials of G at x, i.e., Gr(x) = Fr(x)M −
MTF T

r (x), Gs(x) = Fs(x)M −MTF T
s (x), Gt(x) = Ft(x)M −MTF T

t (x), for

i, j = 1, 2, 3, letting Gr(x)ij , Gs(x)ij , Gt(x)ij be the entries of Gr(x), Gs(x),

Gt(x), respectively, in their ith row and jth column, then it is not hard to show that

the Jacobian matrix for g at x is

J(x) =





Gr(x)12 Gs(x)12 Gt(x)12
Gr(x)31 Gs(x)31 Gt(x)31
Gr(x)23 Gs(x)23 Gt(x)23





which is needed for Newton’s method.

The procedure just described as well as the SVD method carried out as described

in the previous section, have been implemented as part of a Fortran program called

maxtrace.f, and this program has been found in our experiments to be close to

one hundred percent successful (it is successful when Newton’s method does not

fail and therefore the SVD is not used) on 3×3 nonsymmetric matrices of rank two

and three, but not successful on 3×3 nonsymmetric matrices of rank one. As input

to program maxtrace.f, a million 3 × 3 matrices of random entries were gen-

erated and saved in a data file called randomtrix. With initial point x0 = (0, 0, 0)T

for each input matrix, program maxtrace.f was then executed on the one mil-

lion input matrices with an average of 7 to 8 iterations of Newton’s method per

input matrix that produced solutions for all one million matrices, i.e., produced

one million rotation matrices that transform the one million input matrices into

symmetric matrices. Together with computations also implemented in program

maxtrace.f (without the SVD) as described in the previous section, for obtain-

ing from these symmetric matrices the corresponding one million rotation matrices

that transform them into matrices of maximal trace over rotation matrices, the total

time of the execution of maxtrace.f was about 25 seconds. However, using

our Fortran version of the SVD method only (no Newton’s method), Fortran code

that is also part of maxtrace.f was also executed that took about 25 seconds

as well for computing rotation matrices that transform the one million input ma-

trices into the same one million matrices of maximal trace over rotation matrices

obtained with the procedure above. Thus, it appears that at least for code all writ-

ten in Fortran, including the SVD method, it takes about the same amount of time

when everything is done using the procedure with Newton’s method (and the SVD

method in case Newton’s method fails) as it does when everything is done with the

SVD method only. Accordingly, an integer variable called SVDONLY exists in

program maxtrace.f for deciding which of the two ways to use. If SVDONLY

is set to one, then the latter is used. Otherwise, if SVDONLY is not set to one, say
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zero, then the former is used. We also note that in the Fortran code an integer vari-

able called ITEX exists which is set to the maximum number of allowed iterations

of Newton’s method per input matrix.

On the other hand, using Matlab’s version of the SVD method only (no Newton’s

method), Matlab code under the name svdcmp.mwas also implemented and exe-

cuted for computing rotation matrices that transform the one million input matrices

into the same one million matrices of maximal trace over rotation matrices obtained

with the Fortran code above. This was accomplished in about 150 seconds. Ac-

tually, program svdcmp.m, although a Matlab program, also has the capability

of executing Fortran program maxtrace.f to produce the same results obtained

above. This is done with a Matlab mex file called TD_MEX_MAXTRACE.F of

maxtrace.f. Accordingly, a Matlab variable called IFLAG exists in program

svdcmp.m for deciding which to use between Matlab’s SVD method and the

Matlab mex file of maxtrace.f. If IFLAG is set to one, then the former is

used. Otherwise, if IFLAG is not set to one, say zero, then the latter is used. We

note that if IFLAG is not set to one so that the Matlab mex file of maxtrace.f

is used, then integer variable SVDONLY described above must be taken into ac-

count as it is part of maxtrace.f. Finally we note that with IFLAG equal to

zero, program svdcmp.m was successfully executed (using the Matlab mex file

of maxtrace.f) and took about 100 seconds for both SVDONLY equal to zero

and equal to one. See Table 1 for a summary of the times of execution of the Mat-

lab and Fortran codes for the various options described above. Note the Matlab

code is always at least four times slower than the Fortran code.

The Fortran code (maxtrace.f), the Matlab code (svdcmp.m), the Matlab mex

file of maxtrace.f (TD_MEX_MAXTRACE.F), the compiled Matlab mex file

of maxtrace.f (TD_MEX_MAXTRACE.mexa64) and a data file consisting of

one thousand random 3 × 3 matrices (randomtrix) can all be obtained at the fol-

lowing links

https://doi.org/10.18434/M32081

http://math.nist.gov/~JBernal /Maximal_Trace.zip

Table 1. Times of execution in seconds. One million matrices processed.

Code and options Time of execution

Matlab code with Matlab SVD only (no Fortran) 150

Matlab code with Fortran mex file and SVD only 100

Matlab code with Fortran mex file and Newton’s method 100

Fortran code with SVD only 25

Fortran code with Newton’s method 25
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Summary

In this paper we analyze matrices of maximal trace over rotation matrices. A d× d
matrix M is of maximal trace over rotation matrices if given any d × d rotation

matrix U , the trace of UM does not exceed that of M . Given a d × d matrix M
that is not of maximal trace over rotation matrices, it is well known that a d × d
rotation matrix U can be computed with a method called the Kabsch-Umeyama

algorithm (loosely referred to as “the SVD method” throughout the paper), based

on the computation of the singular value decomposition (SVD) of M so that UM
is of maximal trace over rotation matrices. Computing a rotation matrix U in this

manner for some matrix M is what is usually done to solve the constrained or-

thogonal Procrustes problem and its generalization, Wahba’s problem. As a result

of the analysis, we identify a characterization of matrices of maximal trace over

rotation matrices: A d× d matrix is of maximal trace over rotation matrices if and

only if it is symmetric and has at most one negative eigenvalue, which, if it exists,

is no larger in absolute value than the other eigenvalues of the matrix. Establishing

this characterization is the main goal of this paper, and for d = 2, 3, it is shown

how this characterization can be used to determine whether a matrix is of maxi-

mal trace over rotation matrices. Finally, although depending only slightly on the

characterization, as a secondary goal of the paper, for d = 2, 3, we identify alter-

native ways, other than the SVD, of obtaining solutions to the problems of interest.

Given a 2× 2 matrix M that is not of maximal trace over rotation matrices, an al-

ternative approach that does not involve the SVD method for computing a rotation

matrix U so that UM is of maximal trace over rotation matrices, is identified that

produces solutions in closed form. Similarly, if M is a 3 × 3 symmetric matrix,

an alternative approach is also identified that produces solutions partially in closed

form. On the other hand, if M is a 3× 3 matrix that is not symmetric, which is the

most likely situation when solving the constrained orthogonal Procrustes problem

and Wahba’s problem, part of the approach can still be used to produce the usual

orthogonal matrices necessary to carry out the SVD method. Finally, the situation

in which the 3 × 3 matrix M is not symmetric is reconsidered, and a procedure is

identified that uses the so-called Cayley transform in conjunction with Newton’s

method to find a 3 × 3 rotation matrix U so that UM is symmetric, possibly of

maximal trace over rotation matrices. If the resulting UM is not of maximal trace

over rotation matrices, using the fact that UM is symmetric, another 3 × 3 rota-

tion matrix R can then be computed (without the SVD) as described above so that

RUM is of maximal trace over rotation matrices. Since Newton’s method can fail,

whenever this happens, as a last resort the SVD method can then be used also as

described above. We note that all of the above about the three-dimensional case,
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including the SVD method carried out as described above, has been successfully

implemented in Fortran, and without the SVD, for randomly generated matrices,

the Fortran code is successful in our experiments close to one hundred percent of

the time, using the SVD only when it is not. Links to the code are provided in

the last section of the paper. However, we also note that it appears that at least for

code all written in Fortran, it takes about the same amount of time when everything

is done using the procedure with Newton’s method (and the SVD method in case

Newton’s method fails) as it does when everything is done with the SVD method

only. We note as well that Matlab code is also provided at the same links, for ex-

ecuting the Fortran code as a Matlab mex file. Finally, we note that the Matlab

code can also be made to compute solutions using the Matlab version of the SVD

method only (no Fortran code executed). Either way, the Matlab code is at least

four times slower than the Fortran code. See Table 1.
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